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The representation space of the nuclear symplectic Sp( 6, R )  
shell model 
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Poland 

Received 31 January 1992 

Abstract. The pmblem of obtaining the Sp(6,R) irreducible representations that 
arise from the symmetrized producb of A mpies of the fundamental representation 
of Sp(6, R )  is considered. A simple method is developed that rapidly leads to the de- 
termination of the Sp(6, R) content up to a prescribed cut-off. In practical calculations 
A is identified with the nuclson number. It is ahom that for a given excitation energy 
cut-off, nhw, and suffiaentiy large A, the numbcr and multiplicities of the Sp(6, R) ir- 
reducible representations is fmed and the content can be expressed in an A-independent 
manner. Complete resulu are given for n < 8 and all A 16. lime is no difficulty 
in principle in going to higher excitations and details are given for determining the 
Sp(6, R) content for A < 16. 

1. Introduction 

Central to the nuclear symplectic shell model (Rowe 1985, Carvalho et al 1986) is 
the necessity to define the relevant Sp(6, R) representation space for an A-nucleon 
system where the number of nucleons, A, may be quite large, say - 100 or so. Even 
for A as small as 4, as in the w e  of the 4He nucleus, it can be a major task to 
determine the collective subspaces that carry Sp(6, R) irreducible representations 
(Carvalho 1990). The basic problem is to obtain the Sp(6, R) irreducible represen- 
tations that arise from the symmetrized products of A copies of the fundamental 
representation of Sp(6, R). Since the non-trivial unitary irreducible representations 
of the harmonic series of Sp(6, R) are necessarily of infinite dimension the number 
of irreducible representations contained in a symmetrized product is itself infinite. In 
practical calculations interest is usually restricted to a finite excitation energy nhw 
and hence it is desired to know the Sp(6, R) content up to a prescribed cut-off and 
hence of a finite number of Sp(6, R) irreducible representations. It is of some inter- 
est to know how the Sp(6, R) representation space depends on the nucleon number 
A if a given cut-off is assumed. 

It is one of our key results in this paper to show that for a given cut-off, and 
sufficiently large A, the number of Sp(6, R) irreducible representations is fixed and 
their content can be expressed in an A-independent manner. Complete results are 
given for excitations up to a level 8hw and all A > 16. There is no difficulty, at least 
in principle, in going to higher excitations and we specify how to obtain the Sp(6, R) 
irreducible representation content for A < 16. 
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Carvalho (1990) has already made a preliminary study of thii problem making 
extensive use of Schur functions (S-functions) and S-function plethysm together with 
results on the representation theory of Sp(6, R )  (Rowe el 41 1985 and King and 
Wybourne 1985 (herein we follow the notation of the latter paper). She also notes 
briefly the existence of an ‘indirect’ method that exploits the complementarity that 
exists between Sp(6, R) and O(A). Her plethysm method seems difficult to extend to 
large A and does not appear to make transparent the manner in which results depend 
on the nucleon number A. Herein we argue that her ‘indirect’ method provides a 
more efticient and transparent method for obtaining general results. This becomes 
particularly the case when the ‘reduced notation’ associated with the A-independent 
representation of the O( A) 1 S(A) decompositions is fully exploited. 

In this paper we first give a brief review of the A-independent reduced notation 
and establish a table of O(A) 1 S(A) decompositions. These are then used to 
establish the key results already alluded to. 

2. Reduced notation and O(A) 1 S(A) decompositions 

The concept of reduced notation was introduced by Mumaghan (1937) and later 
used by Littlewood (1961) for the calculation of inner plethysms and Kronecker 
products for the symmetric group S(A). The importance of the reduced notation was 
emphasized by Butler and King (1973) and later applied explicitly to the development 
of A-independent O(A) 1 S( A) decompositions ( b a n  Dehuai and Wybourne 1981). 
A concise treatment using the properties of S-function series has been given by Salam 
and Wybourne (1989). 

The standard tensor irreducible representations [A ]  of the full orthogonal group 
O( A) may be labelled by ordered partitions (A )  of integers. The tensor irreducible 
representations {A)  of the symmetric group S(A) may also be labelled by partitions 
( A )  but this time A is restricted to partitions of the integer A. In reduced notation the 
label { A }  = {Al,A,, . . . , A p )  for S(A) is replaced by (A) = (A2, .  . . , Ap). Given 
any irreducible representation ( p )  in reduced notation it can be converted into a 
standard irreducible representation of S( A) by prefixing it with a part (A- [ P I ) .  For 
example an irreducible representation (21) in reduced notation corresponds to {321} 
in S(6) or { E l )  in S(12), etc. It is just this feature that leads to the A-independent 
notation for S(A). If A - Ipl 2 h1 then the resulting irreducible representation 
{A - Ip1, p }  is assuredly a standard irreducible representation of S(A). However if 
A-lpl < p1 then the irreducible representation {A-lpl,p) is non-standard and must 
be converted into standard form using Littlewood’s (1950) S-function modification 

(1) In any S-function two consecutive parts may be interchanged provided that 
the preceding part is decreased by unity and the succeeding part increased by unity, 
the resulting S-function being thereby changed in sign, i.e. 

NkS: 

{ A l , .  . . , A i ,  A i t l , .  . . , A k )  = - { A 1 , .  . . , A i t l  - 1, Ai  + 1,. . . , A b } .  

(2) In any S-function if any part exceeds by unity the preceding part, the value 
of the S-function is zero, i.e. 

if Ai+l  = Ai + 1 then {Al , .  . . , A i , A i t l , . .  . , A k )  = 0. 
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(3) The value of any S-function is zero if the last part is negative. 
If S(A)  is embedded in O ( A )  such that [l] 1 (1) + (0) then in general an 

arbitrary irreducible representation [A ]  of O( A) will have a decomposition content 
given by (Salam and Wybourne 1989) 

[AI  1 (1) 'a {A/G} (1) 

where 

is an infinite S-function series with E a selfconjugate partition of weight e and rank T 

(=lack et ai i983j. Piethyxms of this type may be reiativeiy easiiy evduated to give 
the branching des for O ( A )  1 S(A)  in an A-independent manner. A list of the 
decompositions for all partitions ( A )  of weight wA < 8 and involving not more than 
three parts is given in table 1. In practice the table was automatically generated by 
the program SCHUR. This table can be used without the need to apply modification 
des for all those cases where A - 1 ~ 1  3 p l  yielding immediately the branching rules 
for O ( A )  1 S ( A ) .  Thus since 

[311 (3) + ~ ( 2 )  + (1') + 3 0 )  + 2(0) 

PI 1 13'1 + 2142) + 141' 1 + W I +  ~~ 2~ . .  

we have immediately for A = 6 

and equally well for A = 120 

[ 3 ] ~ { 1 1 7 3 } + 2 { 1 1 8 2 ) + { 1 1 8  12)+3{119 l } + Z { l Z O }  

whereas for A = 4 (3) leads to the non-standard {13) = -{2'} and hence 

[3] 1 {2'} + {21'} + 3{31) + 2{4}. 

If A > 16 there will be no entries in the table requiring use of the modification rules. 
It would be a comparatively easy task to extend the table to partitions of higher 
weight if required. 

3. The fundamental Sp(Zn,R) representations 

There exists a true unitary infinite-dimensional representation 6 of the double cov- 
ering group of Sp(Zn, R), the metaplectic group Mp(?n), which under Sp(2n, R) 
is reducible into the sum of two irreducible representations , 6,  and A-, whose 
leading weights are ( f , . . . , f )  and (+, . . . , j), corresponding to the highest weights 
e l / ' { O )  and d/'{I} of the maximal compact subgroup U(n) (Rowe et d 1985, King 
and Wybourne 1985). The tensor powers A' all decompose into unitary irreducible 
representations of Sp(Zn, R) with the unitary irreducible representations being re- 
ferred to as harmonic series representations. 
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The two fundamental harmonic series unitary irreducible representations A, and 
A- will be henceforth labelled as (f(0)) and ( f (1))  with all those unitary irreducible 
representations appearing in A k  being labelled by the symbols ( i k ( A ) ) .  Under the 
restriction Sp(2n, R )  1 U(n) 

or combining the two fundamental irreducible representations leads to the compact 
result 

A, + A- 1 # M  (3) 

where 
m 

M =  z { m } .  
m=0 

(4) 

where the summation is over all partitions ( A )  = (A,, A,, . . .) for which the conjugate 
partition ( X )  = ( i , ,X , ,  . . .) satisfies the constraints 

This last result means that the irreducible representations of O ( k )  may be limited to 
partitions into at most n non-zero parts. 

4. Plethysms of the fundamental irreducible representations of Sp(Zn,R) 

Our principal problem is to resolve the Ath power of the irreducible representations 
(f(0)) + ( f (1))  of Sp(2n,R) into its constituent irreducible representations up to a 
prescriied cut-off. This amounts to evaluating terms in the plethysms occurring in 

((+(ON + (;(WA = / " ( ( 3 ( 0 ) )  t (f(1))) @ tu) (7) 
"+A 

where p v  is the degree of the irreducible representation {v} of S ( A )  and 
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is a plethysm (Littlewood 1950, Wybourne 1970) and the coefficients cl; are non- 
negative integers. It is the evaluation of these coefficients that becomes our major 
task. Carvalho (1990) has tackled this problem by starting with (3) and evaluating 
the plethysm in the maximal compact subgroup U(n)  and then inverting the result 
to obtain a list of Sp(2n, R) irreducible representations. AU such plethysm methods 
rapidly lead to a combinatorial explosion in the number of terms to be considered 
and the results often do not have the transparency to lead to general conclusions. 

Catvaiino ji99Oj pointed out, but did not Ny expioii an aitemative approacn 
based primarily on the observation that the symmetric group S(A) is a subgroup of 
O(A) and hence one may consider the branching rule 

Sp@nA,R) 1 Sp(2n, R )  x O(A) 1 Sp(2n, R )  x S ( A )  

where the c; are precisely the desired coefficients required in (8). Given an irre- 
ducible representation of Sp(Zn, R), say (;A(A)), one can immediately determine 
the representations {U} of S(A) it is d a t e d  with, together with its multiplicity c;, 
simply from a knowledge of the O(A) 1 S(A) branching rule for the [A ]  irreducible 
representation of O( A). 

To obtain from table 1 a list of Sp(6, R) irreducible representations up to excita- 
tion level 8rW with a nucleon number A 16 having a permutational symmetry {U} 
with respect to S A  we proceed as follows. 

(1) Convert {U} into reduced notation ( p )  for S A .  
(2) Identify the f i t  entry ( p )  in table 1 noting its multiplicity cf; and associated 0, 

(3) Add to the list the entry cX(iA(A)). 
irreducible representation [A]. 

(4) Repeat steps 2 and 3 for all entries ( p )  in the table. 
For example, to obtain the list for the totally symmetric irreducible representation 

{A} of S A  since. in reduced notation {A} -t (0) we must identify all entries (0) in 

of 0, and hence the list will contain 3($A(51)). Putting t = +A we obtain the 
complete list for A 2 16 up to excitation level 8fw as 

A 8 {A} = ( t ( 0 ) )  + (t(1)) + (W) + 2(t(3)) + 3(1(4)) + (W)) + 4(1(5)) 

+ Z(t(41)) + (t(32)) + 6(1(6)) + 3(t(51)) + 3(t(42)) + (t(3')) 

+ 8 ( t ( 7 ) )  + 6(t(61)) + 5(1(52)) + 4(t(43)) + (t(421)) 

+ l l ( t (8 ) )  + g(t(71)) + lO(t(62)) + (t(61')) + 7(1(53)) 

+ 2(1(521)) + 4(t(4')) + 2(1(431)) + (t(42')). 

:&!e 1. E'.a (e) W&? -&$ FL.&@dtj. 3 fcr the iZ@!.'h!. repre.px2t;ynn [5!] 

Since the largest partition in the above result is (8) we can conclude that the 
above resuit is valid for aii A 3 i6. For vaiues oi A < i 6  it wiii in C Z 6  

be necessary to make use of modification rules as shown earlier and in some such 
cases the O(A) irreducible representations [A]  will not satisfy the constraints of (6) 
and must be discarded. The latter situation would arise in A = 4 for the O(4) 
irreducible representation [ZZ1] which violates (6~). Our restriction to partitions ( A )  
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into not more than three parts ensures that for Sp(6, R) (6b) is always satisfied. 
Again for A = 4 the coefficient of (2(5)) will be 3 and not 4 as found above since 
(5) is non-standard in S(4) and modifies as {-I 5) = -{4) cancelling one of the 
{4) irreducible representations that comes from the reduced notation irreducible 
representations (0). 

5. Modification rules in reduced notation 

We have noted that for small values of A recourse must be made to the S A  mod- 
ification rules based upon Littlewood’s S-function modification rules. In using the 
reduced notation it is useful to be able to write down the results directly in the re- 
duced notation. That i~, starting with a reduced notation irreducible representation 

LULU au uuier ip-1 u ~ a i  up11 U~WLLIGI~LUII WIU 

yield ( p ) ,  to within a sign (&). ( p )  will be assuredly standard in S A  if A 2 p l  + lpl. 
In general any reduced notation irreducible representation of the form 

ipLj .&ai k siaiGsd for .-:-.I ... _.L__ ,\ .La. __>.C__*.__ ._<I, 

(-1)’(A- Ipl+ 1 9 ~ 1  + 1 9 ~ 2  + I , . . .  ,ps-I + 1 , ~ , + i , ~ , + z , . . . )  = ( P ) .  (11) 

For example, for A = 21 we have the correspondence 

(4432111) = {54432111) 

and deduce from (11) the members of the following infinite sequence of reduced 
notation irreducible representations all modify to (4432111): 

(4432:::) - (6432:::) + $532:::) - (5552I:q + (8554:::) - $::43::) 
+(6554321)-(6554322)+(65543222)-(65543221)+(6554322211) 

- (65543222111) + ... . 
The above equations allow for rapid construction of results from table 1 even for 
values of A < 16. In the case of S, we have for (2) the signed sequence 

(2) - (3) + (3’) - (3’1) + (3’1’) - ... . (13) 

To determine the number of times (2(43)) occurs in the fourth power of the fun- 
damental irreducible representation of Sp(6, R) with permutational symmetry {2’} 
we need to evaluate the number of times (2) occurs in the decomposition of the 
irreduciiiie representation i43j of 0, under the restriction 0, i S,. From tabie i we 
f i d  that the decomposition for [43] contains the term 20(2) + ZO(3) + 2(32). Noting 
(13) we can immediately conclude that (Z(43)) occurs with permutational symmetry 
{22} twice. Continuing in that manner one finds for A = 4 (to weight 8) 

d 8 {Z’} = (2(2)) + (2(3)) + 2(2(21)) + 2(2(4)) + 2(2(31)) + 2(2(2’)) 
+ ( ~ ( 2 1 ~ ) )  + 3(2(5jj + 4(z (4 i ) j  + z(z(3zj) + j i (3i ; j )  

+ 4(2(6)) +6(2(51)) + 4(2(42)) + 2(2(41’)) + 5(2(7)) + 8(2(61)) 

+6(2(52))+3(2(51’)) t 2 ( 2 ( 4 3 ) ) +  7(2(8))+ 10(2(71)) +8(2(62)) 

+ 4(2(61’)) +4(2(53)) + 2(2(4’)). 
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Inspection of the above result reveals a number of interesting points. The 
Sp(6, R) irreducible representations (2(2’1)), (2(421)), (2(3’1)), (2(521)) do not 
appear because firstly they invoke non-standard 0, irreducible representations that 
modify to zero and secondly they correspond to partitions that violate (Q). Three 
terms (2(Z3)), (2(32’)), (2(42’)) were found to have negative coefficients. The 
magnitude of their coefficients were the same as those for (2(2’)), (2(32)), (2(42)), 
which is consistent with the 0, modification rules for [Z3], [32’], [42’], respectively, 
but they violate (Q) and hence were discarded. The 0, modification rules can also 
be invoked to explain various other equalities of coefficients such as for example 
that between (2(6)) and (2(61’)). The absence of (2(3’2)) may at f i t  sight seem 
surprising since under 0, modification [3’2] -+ -[3’]; however it happens that un- 
der 0, 1 S, [3’] 1 {4} + 2{31) + 2{212] + {l“] and hence (2(3’)) cannot appear in 
A ‘8 {2’}. 

6. Concluding remarks 

The above examples and comments should suffice to demonstrate the validity of the 
claims made in the abstract of this paper. In terms of plethysms the results obtained 
in this paper would be formidable and yet in term of the reduced notation and the 
understanding of the O ( A )  1 S( A) branching rules the results for up to a prescriied 
cut& become relatively simple and hence it is possible now to obtain a complete 
description of the Sp(6, R) content of the nuclear symplectic model in a manner that 
does not depend significantly on the nucleon number A. 
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